Clinical Accuracy of a Patient Specific Femoral Neck Osteotomy Guide

JV Baré; J Selim; Z Kiraly; S Stambouzou; JW Pierrepont; S McMahon; AJ Shimmin
1Melbourne Orthopaedic Group, VIC, Australia; 2Optimized Ortho, NSW, Australia; 3University of Sydney, NSW, Australia; 4Malabar Orthopaedics, VIC, Australia

Introduction
Achieving an accurate femoral neck osteotomy can lead to improved control over leg length and offset in Total Hip Arthroplasty (THA) [1]. The OPS™ preoperative planning system (Optimized Ortho, Sydney, Australia) incorporates 3D templating from CT to determine an optimal stem position from which the osteotomy is planned, Fig 1.

This study investigates the accuracy of a patient specific instrument designed and 3D printed to deliver the planned osteotomy, Fig 2.

Methods: Intraoperative
- 100 patients received a Trinity™/TriFit TS™ cementless THA (Corin, Cirencester, UK) through a posterior approach.
- The femoral osteotomy for all patients was performed using the patient specific instrument, Fig 3.

Methods: Postoperative
- The achieved level of osteotomy was confirmed postoperatively by registering a 3D model of the planned resected femur to the postoperative 2D radiograph, using Mimics X-ray module (Materialise, Belgium), Fig 4.
- Using 2D measuring software (Imatri Medical, South Africa), the image was scaled using the known cup diameter, Fig 5.
- Subsequently, the difference between the planned and achieved osteotomy level was measured, Fig 5.

Results
The mean difference between the planned and achieved osteotomy level was 0.3mm, with a range of 0.0mm – 4.4mm.

Conclusions
- The patient specific osteotomy guide showed high level of accuracy, with 96% of cases within 2mm and a maximum error of 4mm.
- By accurately controlling the level of osteotomy, a surgeon will have better control of leg length and offset.

Fig 1. 3D templating from CT to determine a planned osteotomy.
Fig 2. The patient specific instrument is designed to deliver the planned osteotomy intraoperatively.
Fig 3. Patient specific instrument for femoral osteotomy: 3D model and intraoperative photos
Fig 4. 3D to 2D registration of the resected femur to the postoperative radiograph
Fig 5. Measurement of the difference between the planned and achieved osteotomy level
Fig 6. Osteotomy level difference from plan. 100 consecutive cases, 3 surgeons

References

Disclosure
One or more of the authors are paid consultants to Corin Group. One of the authors is a shareholder of Corin Group.