Clinical Accuracy of a Patient Specific Femoral Neck Osteotomy Guide

1W Riddell; 2JV Baré; 3JW Pierrepont; 3CZ Stambouzou; 4E Marell; 4AJ Shimmin
1University of Sydney, NSW, Australia; 2Melbourne Orthopaedic Group, VIC, Australia; 3Optimized Ortho, NSW, Australia; 4Peninsula Orthopaedics, NSW, Australia

Introduction
Much of the accuracy of implanting uncemented femoral components relies on the accuracy of the femoral neck osteotomy. This study looks at a concept for a new patient specific instrument from Optimized Ortho (Sydney, Australia), a division of Corin Group (Cirencester, UK), designed and printed in 3D from CT-templated scans of the patients’ femora obtained at the time of the Optimized Ortho protocol for OPS™ acetabular planning, Fig 1. Following 3D templating, the osteotomy is planned, then the Patient Specific Guide is designed and 3D printed.

Method of Validation
1) Postoperatively, a 3D/2D registration matched the planned 3D resected femur to the postoperative AP radiograph, Fig 3.

2) The image was then scaled and the difference between planned and achieved level of osteotomy was measured, Fig 4.

Materials and Methods
Thirty-three patients received an uncemented Trinity™ acetabular component (Corin, UK) and an uncemented TriFit TS™ femoral component (Corin, UK) through a posterior approach. The femoral osteotomy for all patients was performed using the Patient Specific Instrument illustrated below, Fig 2.

The achieved level of osteotomy was confirmed postoperatively by doing a 3D/2D registration, using the Mimics X-ray module (Materialise, Belgium), of the planned 3D resected femur to the postoperative AP radiograph. The image was then scaled and the difference between the planned and achieved level of osteotomy was measured (Imatri Medical, South Africa).

Results
The mean difference between the planned and achieved osteotomy level was 0.7mm, with a range of 0.1mm – 6.6mm.

Only 1 patient had a difference of more than 3mm.

Of the 33 patients, 28 had a difference of less than 1mm.

Conclusions
• A patient specific femoral neck osteotomy guide was made from pre-operative 3D planning from CT.
• This femoral neck osteotomy guide showed very good clinical accuracy in the first group of patients.
• A larger study into planned and achieved leg length and offset is underway.

Disclosure: One or more of the authors are paid consultants to Corin Group. One of the authors is a shareholder of Corin Group.